精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax-数学公式-61nx在x=2处取得极值.
(1)求实数a的值;
(2)g(x)=(x-3)ex-m(e为自然对数的底数),若对任意x1∈(0,2),x2∈[2,3],总有f(x1)-g(x2)≤0成立,求实数m的取值范围.

解:(1)函数的定义域为(0,+∞)
求导函数可得
∵函数f(x)=ax--61nx在x=2处取得极值,
∴f′(2)=0,即=0,∴a=2
当a=2时,
x∈(1,2)时,f′(x)<0;x∈(2,+∞),f′(x)>0
∴函数f(x)在x=2处取得极值,∴a=2;
(2)由(1)知
∴当x∈(0,1)时,f′(x)>0,f(x)在(0,1)上是增函数;当x∈(1,2)时,f′(x)<0,f(x)在(1,2)上是减函数
∴f(x)在(0,2)上的最大值为f(1)=-2
∵g(x)=(x-3)ex-m,∴g′(x)=(x-2)ex≥0在[2,3]上恒成立
∴g(x)在[2,3]上单调递增,其值域为[-e2-m,-m]
∵对任意x1∈(0,2),x2∈[2,3],总有f(x1)-g(x2)≤0成立,
∴f(x)max≤g(x)min
∴-2≤-e2-m
∴m≤2-e2
分析:(1)确定函数的定义域,求导函数,利用极值的定义,即可求实数a的值;
(2)对任意x1∈(0,2),x2∈[2,3],总有f(x1)-g(x2)≤0成立,等价于f(x)max≤g(x)min,求出最值,即可得到结论.
点评:本题考查导数知识的运用,考查函数的极值,考查恒成立问题,对任意x1∈(0,2),x2∈[2,3],总有f(x1)-g(x2)≤0成立,转化为f(x)max≤g(x)min,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案