精英家教网 > 高中数学 > 题目详情
设函数f(x)=|sinx|+cos2x,若x∈[-
π
6
π
2
]
则函数f(x)的最小值是(  )
分析:化简得f(x)=-2sin2x+|sinx|+1,再分sinx的正负进行讨论,结合二次函数的图象与性质即可求出函数f(x)的最小值.
解答:解:①当x∈[-
π
6
,0]
时,f(x)=-sinx+cos2x=-2sin2x-sinx+1
令t=sinx,得f(x)=-2t2-t+1=-2(t+
1
4
2+
9
8

由二次函数的图象,可得当t=0或-
1
2
时,函数有最小值1
∴当sinx=0或-
1
2
时,函数f(x)的最小值是1;
②当x∈[0,
π
2
]
时,f(x)=sinx+cos2x=-2sin2x+sinx+1
类似①的计算,可得:当sinx=1时函数f(x)的最小值是0
综上所述,可得当x∈[-
π
6
π
2
]
时,函数f(x)=|sinx|+cos2x的最小值是f(
π
2
)=0
故选:A
点评:本题通过求含有绝对值的三角函数式的最小值,考查了三角函数的图象与性质和二次函数在闭区间上求最值等知识点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
ax
+xlnx,g(x)=x3-x2-3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的s,t∈[1,2],都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=exsinx.
(1)求函数f(x)的单调区间;
(2)如果对于任意的x∈[0,
π
2
],f(x)≥kx总成立,求实数k的取值范围;
(3)设函数F(x)=f(x)+excosx,x∈[-
2011π
2
2013π
2
].过点M(
π-1
2
,0
)作函数F(x)图象的所有切线,令各切点的横坐标构成数列{xn},求数列{xn}的所有项之和S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y).数列{an}满足f(an+1)=
1
f(-2-an)
(n∈N*)

(Ⅰ)求f(0)的值,判断并证明函数f(x)的单调性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得点(t,as)、(s,at)都在直线y=kx-1上,试判断是否存在自然数M,当n>M时,an>0恒成立?若存在,求出M的最小值,若不存在,请说明理由;
(Ⅲ)若a1=f(0),不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(1+logf(1)x)
对不小于2的正整数恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3x-1
x+1

(1)已知s=-t+
1
2
(t>1),求证:f(
t-1
t
)=
s+1
s

(2)证明:存在函数t=φ(s)=as+b(s>0),满足f(
s+1
s
)=
t-1
t

(3)设x1=
11
17
,xn+1=f(xn),n=1,2,….问:数列{
1
xn-1
}是否为等差数列?若是,求出数列{xn}中最大项的值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆二模)设函数f(x)=x3+ax2+bx(x>0)的图象与直线y=4相切于M(1,4).
(1)求y=f(x)在区间(0,4]上的最大值与最小值;
(2)是否存在两个不等正数s,t(s<t),当s≤x≤t时,函数f(x)=x3+ax2+bx的值域是[s,t],若存在,求出所有这样的正数s,t;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案