精英家教网 > 高中数学 > 题目详情
在△ABC中,∠BAC=
π
3
|AB|
=1,
|AC|
=2
,点E,F是边BC的三等分点,则
AE
AF
 
分析:先判定三角形形状,然后建立直角坐标系,分别求出向量
AE
AF
的坐标,代入向量数量积的运算公式,即可求出答案.
解答:解:∵在△ABC中,∠BAC=
π
3
|AB|
=1,
|AC|
=2

由余弦定理可知BC=
12+22-2×1×2×
1
2
=
3

∵三边满足勾股定理,∴∠CBA=90°
以B为坐标原点,BA、BC方向为x,y轴正方向建立坐标系,
可得B(0,0),A(1,0),C(0,
3

又∵E,F分别是Rt△ABC中BC上的两个三等分点,
则E(0,
3
3
),F(0,
2
3
3
),
AE
=(-1,
3
3
),
AF
=(-1,
2
3
3

AE
AF
=1+
2
3
=
5
3

故答案为:
5
3

精英家教网
点评:本题考查平面向量数量积的运算,将向量数量积的运算坐标化是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在△ABC中,|
BA
|=|
BC
|
,延长CB到D,使
AC
AD
,若
AD
AB
AC
,则λ-μ的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
BA
BC
=3,S△ABC∈[
3
2
3
3
2
]
,则∠B的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
(1)若函数f(x)=lg(x+
x2+a
),为奇函数,则a=1;
(2)函数f(x)=|sinx|的周期T=π;
(3)已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)
,其中θ∈(π,
2
),则
a
b

(4)在△ABC中,
BA
=a,
AC
=b,若a•b<0,则△ABC是钝角三角形
( 5)O是△ABC所在平面上一定点,动点P满足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
)
,λ∈(0,+∞),则直线AP一定通过△ABC的内心.
以上命题为真命题的是
(1)(2)(3)(5)
(1)(2)(3)(5)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中
a+b
a-b
等于(  )
A、
sin(A+B)
sin(A-B)
B、
tan(A+B)
tan(A-B)
C、
sin
A+B
2
sin
A-B
2
D、
tan
A+B
2
tan
A-B
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,
BA
BC
=3,S△ABC∈[
3
2
3
3
2
]
,则∠B的取值范围是(  )
A.[
π
4
π
3
]
B.[
π
6
π
4
]
C.[
π
6
π
3
]
D.[
π
3
π
2
]

查看答案和解析>>

同步练习册答案