精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2x2-alnx
(1)若a=4,求函数f(x)的极小值;
(2)设函数g(x)=-cos2x,试问:在定义域内是否存在三个不同的自变量xi(i=1,2,3)使得f(xi)-g(xi)的值相等,若存在,请求出a的范围,若不存在,请说明理由?

解:(1)由已知得,xk.Com]
则当0<x<1时f'(x)<0,可得函数f(x)在(0,1)上是减函数,
当x>1时f′(x)>0,可得函数f(x)在(1,+∞)上是增函数,
故函数的极小值为f(1)=2;
(2)若存在,设f(xi)-g(xi)=m(i=1,2,3),则对于某一实数m,方程f(x)-g(x)=m在(0,+∞)上有三个不同的实数根,设F(x)=f(x)-g(x)-m=2x2-alnx+cos2x-m,
有两个不同的零点,即关于x的方程4x2-2xsin2x=a(x>0)有两个不同的解G(x)=4x2-2xsin2x(x>0),
则G'(x)=8x-2sin2x-4xcos2x=2(2x-sin2x)+4x(1-cos2x),
设h(x)=2x-sin2x,则h′(x)=2-2cos2x≥0,故h(x)在(0,+∞)上单调递增,
则当x>0时h(x)>h(0)=0,即2x>sin2x,
又1-cos2x>0,则G′(x)>0故G(x)在(0,+∞)上是增函数,
则a=4x2-2xsin2x(x>0)至多只有一个解,故不存.
方法二:关于方程的解,
当a≤0时,由方法一知2x>sin2x,此时方程无解;
当a>0时,由于
可以证明是增函数,此方程最多有一个解,故不存在.
分析:(1)由a=4,得函数f(x)的解析式,求出其导函数以及导数为0的根,通过比较两根的大小找到函数的单调区间,进而求出f(x)的极小值;
(2)若定义域内存在三个不同的自变量的取值xi(i=1,2,3),使得f(xi)-g(xi)的值恰好都相等,设f(xi)-g(xi)=m.(i=1,2,3),则对于某一实数m,方程f(x)-g(x)=m在(0,+∞)上有三个不等的实数,由此能求出在定义域内不存在三个不同的自变量的取值xi(i=1,2,3)使得f(xi)-g(xi)的值恰好都相等.
点评:本题考查函数的单调区间的求法,考查满足条件的实数的取值范围的求法.综合性强,难度大,具有一定的探索性.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案