精英家教网 > 高中数学 > 题目详情

在△ABC中,边a、b、c分别是角A、B、C的对边,且满足bcosC=(3a-c)cosB.
(1)求cosB;
(2)若数学公式数学公式=4,b=4数学公式,求边a,c的值.

解:(1)在△ABC中,∵bcosC=(3a-c)cosB,由正弦定理可得 sinBcosC=(3sinA-sinC)cosB,
∴3sinA•cosB-sinC•cosB=sinBcosC,化为:3sinA•cosB=sinC•cosB+sinBcosC=sin(B+C)=sinA.
∵在△ABC中,sinA≠0,故cosB=
(2)由 =4,b=4,可得,a•c•cosB=4,即 ac=12.…①.
再由余弦定理可得 b2=32=a2+c2-2ac•cosB=a2+c2-,即 a2+c2=40,…②.
由①②求得a=2,c=6; 或者a=6,c=2.
综上可得,,或
分析:(1)利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理求得cosB的值.
(2)由 =4 可得 ac=12,再由余弦定理可得 a2+c2=40,由此求得边a,c的值.
点评:本题以三角形为载体,主要考查了正弦定理、余弦定理的运用,考查两角和公式.考查了学生综合分析问题和解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,边a,b,c分别为角A,B,C的对边,若
m
=(sin2
B+C
2
,1)
n
=(cos2A+
7
2
,4)
m
n
.

(1)求角A的度数;
(2)若a=
3
,b+c=3
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,边a,b,c所对的角分别为A,B,C,已知(b+c):(c+a):(a+b)=4:5:6,若b+c=8,则△ABC的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,边a,b,c所对应的角为A,B,C,B为锐角,sinAsinB=
BC
2AC

(Ⅰ)求角B的值;
(Ⅱ)若cosA=-
5
5
,求sin(2A+B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)在△ABC中,边a、b、c分别是角A、B、C的对边,且满足bcosC=(3a-c)cosB.
(1)求cosB;
(2)若
BC
BA
=4,b=4
2
,求边a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,边a,b,c的对角分别为A.B、C,且sin2A+sin2C-sinA•sinC=sin2B
(1)求角B的值;
(2)求2cos2A+cos(A-C)的范围.

查看答案和解析>>

同步练习册答案