精英家教网 > 高中数学 > 题目详情
在正方体ABCDA1B1C1D1中,PDD1的中点,O为底面ABCD的中心,求证:B1O⊥平面PAC.

证明:如图建立空间直角坐标系,不妨假定正方体每边长为2,则A(2,0,0),P(0,0,1),C(0,2,0),B1(2,2,2),O(1,1,0).

于是=(1,1,2),=(-2,2,0),=(-2,0,1),由于=-2+2=0及=-2+2=0.

OB1AC,OB1AP.

ACAP=A,∴OB1⊥平面PAC.

绿色通道:

立体几何中的向量方法——“三步曲”:

(1)建立立体图形与空间向量的联系,用空间向量表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题.

(2)通过向量运算,研究点、直线、平面之间的关系.

(3)根据运算结果的几何意义来解释相关问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点. 
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H与平面AD1C的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案