精英家教网 > 高中数学 > 题目详情
过点A(1,1)作直线,被椭圆所截得的弦被此点平分,则此直线方程为__________________.

解析:设直线为(t为参数)代入椭圆方程并整理得(4cos2α+9sin2α)t2+(8cosα+18sinα)t-23=0.?

t1+t2=0,∴8cosα+18sinα=0.?

∴tanα=-.∴直线方程为4x+9y-13=0.

答案:4x+9y-13=0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图a,直角梯形ABCD中,∠A=∠B=90°,AB=BC=
12
AD=1,E是底边AD的中点,沿CE将△CDE折起,使A-CE-D是直二面角(如图b).在图b中过D作DF⊥平面BCD,EF∥平面BCD.
①求证:DF?平面CDE;
②求点F到平面ACD的距离;
③求面ACE与面ACF所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图梯形ABCD,AD∥BC,∠A=90°,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为P,在直线DE上是否存在一点M,使得PM∥面BCD?若存在,请指出点M的位置,并证明你的结论;若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,点D是BC的中点,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲过点A′作一截面与平面AC'D平行,问应当怎样画线,写出作法,并说明理由;
(2)求异面直线BA′与 C′D所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2014届四川省高二10月月考理科数学试卷(解析版) 题型:解答题

如图梯形ABCD,AD∥BC,∠A=900,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE

折成直二面角D-EC-AB.

(1)求直线BD与平面ABCE所成角的正切值;

(2)设线段AB的中点为,在直线DE上是否存在一点,使得∥面BCD?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;

   

 

查看答案和解析>>

科目:高中数学 来源:2010年广东省江门市高考数学后阶段备考指导和猜题试卷(解析版) 题型:解答题

如图a,直角梯形ABCD中,∠A=∠B=90°,AB=BC=AD=1,E是底边AD的中点,沿CE将△CDE折起,使A-CE-D是直二面角(如图b).在图b中过D作DF⊥平面BCD,EF∥平面BCD.
①求证:DF?平面CDE;
②求点F到平面ACD的距离;
③求面ACE与面ACF所成二面角的余弦值.

查看答案和解析>>

同步练习册答案