精英家教网 > 高中数学 > 题目详情

在(-3)n(n∈N*)的展开式中,所有项系数的和为-32,则的系数等于________.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在平面直角坐标系上,设不等式组
x>0
y>0
y≤-m(x-3)
(n∈N*
所表示的平面区域为Dn,记Dn内的整点(即横坐标和纵坐标均
为整数的点)的个数为an(n∈N*).
(Ⅰ)求a1,a2,a3并猜想an的表达式再用数学归纳法加以证明;
(Ⅱ)设数列{an}的前项和为Sn,数列{
1
Sn
}的前项和Tn
是否存在自然数m?使得对一切n∈N*,Tn>m恒成立.若存在,
求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在求1+2+3+4+5+6+…+100时,可运用公式1+2+3+…+n=
n(n+1)2
直接计算,第一步
 
;第二步
 
第三步,输出计算结果.

查看答案和解析>>

科目:高中数学 来源: 题型:

在计算“1×2+2×3+…+n(n+1)”时,有如下方法:
先改写第k项:k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3),…,
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=
1
3
n
(n+1)(n+2).
类比上述方法,请你计算“1×3+2×4+…+n(n+2)”,其结果写成关于n的一次因式的积的形式为:
1
6
n(n+1)(2n+7)
1
6
n(n+1)(2n+7)

查看答案和解析>>

科目:高中数学 来源: 题型:

在计算“1×2+2×3+…n(n+1)”时,先改写第k项:
k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=
1
3
(1×2×3-0×1×2),2×3=
1
3
(2×3×4-1×2×3),..
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],相加,得1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2)

(1)类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”的结果;
(2)试用数学归纳法证明你得到的等式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在计算“1×2+2×3+…n(n+1)”时,先改写第k项:
k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=
1
3
(1×2×3-0×1×2),2×3=
1
3
(2×3×4-1×2×3),..
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],相加,得1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2)

(1)类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”的结果;
(2)试用数学归纳法证明你得到的等式.

查看答案和解析>>

同步练习册答案