精英家教网 > 高中数学 > 题目详情
已知m是非零实数,抛物线C:y2=2px(p>0)的焦点F在直线l:x-my-=0上.
(Ⅰ)若m=2,求抛物线C的方程;
(Ⅱ)设直线l与抛物线C交于A,B两点,过A,B分别作抛物线C的准线的垂线,垂足为A1,B1,△AA1F,△BB1F的重心分别为G,H求证:对任意非零实数m,抛物线C的准线与x轴的交点在以线段GH为直径的圆外.
解:(Ⅰ)因为焦点在直线l上,得
又m=2,故p=4,
所以抛物线C的方程为y2=8x.
(Ⅱ)证明:因为抛物线C的焦点F在直线l上,
所以p=m2,所以抛物线C的方程为y2=2m2x,
设A(x1,y1),B(x2,y2),
消去x,得
由于m≠0,故Δ=4m6+m4>0,
且有y1+y2=2m3,y1y2=-m4
设M1,M2分别为线段AA1,BB1的中点,
由于,可知
所以
所以GH的中点
设R是以线段GH为直径的圆的半径,

设抛物线的准线与x轴交点



故N在以线段GH为直径的圆外。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知m是非零实数,抛物线C:y2=2px(p>0)的焦点F在直线l:x-my-
m22
=0
上.
(I)若m=2,求抛物线C的方程
(II)设直线l与抛物线C交于A、B,△AA2F,△BB1F的重心分别为G,H,求证:对任意非零实数m,抛物线C的准线与x轴的焦点在以线段GH为直径的圆外.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分15分)已知m是非零实数,抛物线(p>0)

的焦点F在直线上。

(I)若m=2,求抛物线C的方程

(II)设直线与抛物线C交于A、B,△A,△的重心分别为G,H

求证:对任意非零实数m,抛物线C的准线与x轴的焦点在以线段GH为直径的圆外。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省岳阳一中高三(上)第四次月考数学试卷(文科)(解析版) 题型:解答题

已知m是非零实数,抛物线C:y2=2px(p>0)的焦点F在直线上.
(I)若m=2,求抛物线C的方程
(II)设直线l与抛物线C交于A、B,△AA2F,△BB1F的重心分别为G,H,求证:对任意非零实数m,抛物线C的准线与x轴的焦点在以线段GH为直径的圆外.

查看答案和解析>>

科目:高中数学 来源:2010年浙江省高考数学试卷(文科)(解析版) 题型:解答题

已知m是非零实数,抛物线C:y2=2px(p>0)的焦点F在直线上.
(I)若m=2,求抛物线C的方程
(II)设直线l与抛物线C交于A、B,△AA2F,△BB1F的重心分别为G,H,求证:对任意非零实数m,抛物线C的准线与x轴的焦点在以线段GH为直径的圆外.

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(浙江卷)解析版(文) 题型:解答题

 [番茄花园1] 已知m是非零实数,抛物线(p>0)

的焦点F在直线上。

(I)若m=2,求抛物线C的方程

(II)设直线与抛物线C交于A、B,△A,△的重心分别为G,H

求证:对任意非零实数m,抛物线C的准线与x轴的焦点在以线段GH为直径的圆外。

 


 [番茄花园1]1.

查看答案和解析>>

同步练习册答案