精英家教网 > 高中数学 > 题目详情

已知函数f(x)=alnx+(a≠0)在(0,)内有极值.

(I)求实数a的取值范围;

(II)若x1∈(0,),x2∈(2,+∞)且a∈[,2]时,求证:f(x2)﹣f(x1)≥ln2+

 

【答案】

(1);(2)证明过程详见解析.

【解析】

试题分析:本题主要考查导数的运算,利用导数研究函数的单调性及最值、不等式等基础知识,考查函数思想,突出考查综合运用数学知识和方法分析问题解决问题的能力.第一问,先对求导,由函数定义域可知,的分母为正数,设的分子为新函数,判断,所以,解得的取值范围;第二问,对求导,令,设出方程的两根,利用韦达定理得到两根之和、两根之积,判断导函数的正负,决定函数的单调性,求出最大值和最小值,代入求证的式子的左边,化简,得到,再求函数的最小值,通过不等式的传递性得到求证的表达式.

试题解析: (I)由),得:

∵a≠0,令,∴

,  则

(II)由(I)得:

)的两根为

,得

时,,函数f(x)单调递增;

时,,函数f(x)单调递减,

==(利用

则函数单调递增,

,则

考点:1.二次函数的性质;2.零点问题;3.利用导数判断函数的单调区间;4. 利用导数判断函数的最值;5.不等式的性质.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案