精英家教网 > 高中数学 > 题目详情
解不等式(x-3)(x+2)(x-1)2(x-4)>0.

解:首先将x的最高次幂的系数化为正数,设y=(x-3)(x+2)(x-1)2(x-4).

函数y的各因式的根是-2,1,3,4.

应用四个根的值,把x的取值范围分为五个区间:

x<-2,-2<x<1,1<x<3,3<x<4,x>4.

函数y在上述区间取值时,函数值符号如下图.

由上图可知,∵y>0,

∴原不等式的解集是{x|-2<x<1或1<x<3或x>4}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)•f(b),且当x<0时,f(x)>1.
(1)求证:f(x)>0;
(2)求证:f(x)为减函数;
(3)当f(4)=
1
16
时,解不等式f(x-3)•f(5-x2)≤
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在{x|x>0}上的增函数,且f(
x
y
)=f(x)-f(y)

(Ⅰ)求f(1)的值;
(Ⅱ)若f(6)=1,解不等式f(x+3)-f(
1
x
)<2

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:|x-3|+
2-x
>3

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)关于x的不等式组
x2-x-2>0
2x2+(2k+5)x+5k<0
的整数解的集合为{-2},求实数k的取值范围.
(Ⅱ)若f(x)是定义在(0,+∞)上的增函数,且对一切x>0满足f(
x
y
)=f(x)-f(y)
.f(6)=1,解不等式f(x-3)-f(
1
x
)<2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在(0,+∞)上的增函数,且f(
x
y
)=f(x)-f(y)

(1)求f(1)的值;
(2)若f(6)=1,解不等式f(x+3)+f(
1
x
)≤2

查看答案和解析>>

同步练习册答案