精英家教网 > 高中数学 > 题目详情
函数f(x)=
log3x-1,(x≥1)
2x-4,(x≤0)
的反函数是(  )
分析:由分段函数的各个解析式解出自变量x,再把x、y交换位置,同时注明反函数的定义域(即原函数的值域),写出反函数的解析式即可.
解答:解:∵当x≥1,函数y=log3x-1(y≥-1),
∴x=3y+1
∴反函数为 y=3x+1 (x≥-1),
当x≤0时,函数y=2x-4(y≤-4),
∴x=
y+4
2

∴反函数为 y=
x+4
2
(x≤-4),
f-1(x)=
3x+1(x≥-1)
x+4
2
(x≤-4)

故选D.
点评:本题考查求反函数的步骤和方法,注意反函数的定义域应是原函数的值域,不能根据反函数的解析式来求反函数的定义域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、设函数f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,则f(x12)+f(x22)+…f(x102)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是减函数,则实数a的范围是(  )
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log 2(x2-x-2)
(1)求f(x)的定义域;
(2)当x∈[3,4]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有三个命题:“①0<
1
2
<1.②函数f(x)=log 
1
2
x是减函数.③当0<a<1时,函数f(x)=logax是减函数”.当它们构成三段论时,其“小前提”是
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•茂名二模)设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的高调函数.现给出下列命题:
①函数f(x)=log 
1
2
x为(0,+∞)上的高调函数;
②函数f(x)=sinx为R上的高调函数;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的高调函数,那么实数m的取值范围是[2,+∞);
其中正确的命题的个数是(  )

查看答案和解析>>

同步练习册答案