精英家教网 > 高中数学 > 题目详情
直线y=
3
x
关于y对称的直线的方程为
y=-
3
x
y=-
3
x
分析:把直线方程y=
3
x
中的x换成-x,即可得到直线y=
3
x
关于y轴对称的直线方程.
解答:解:把直线方程 y=
3
x
中的x换成-x,即可得到直线y=
3
x
关于y轴对称的直线方程.
故直线y=
3
x
关于y对称的直线的方程为 y=-
3
x

故答案为:y=-
3
x
点评:本题考查直线关于直线的对称直线方程的求法,注意对称轴方程的特殊性是本题解答的关键,考查灵活运用基本知识的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①“向量
a
b
的夹角为锐角”的充要条件是“
a
b
>0”;
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
x1+x2
2
)>
f(x1)+f(x2)
2

③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];
④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象.
其中真命题的序号是
 
.(请写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的是(  )
A、对任意x∈R,都有3x>2x
B、y=(
3
-x是R上的增函数;
C、若x∈R且x≠0,则log2x2=2log2x
D、在同一坐标系中,y=2x与y=log2x的图象关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象与函数y=ax-1(a>1)的图象关于直线y=x对称.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若f(x)在区间[m,n](m>-1)上的值域为[loga
p
m
,loga
p
n
],求实数p的取值范围;
(Ⅲ)设函数g(x)=loga(x2-3x+3),F(x)=af(x)-g(x),其中a>1.若w≥F(x)对?x∈(-1,+∞)恒成立,求实数w的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区一模)已知函数f(x)的图象与函数y=ax-1,(a>1)的图象关于直线y=x对称,g(x)=loga(x2-3x+3)(a>1).
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间[m,n](m>-1)上的值域为[loga
p
m
loga
p
n
]
,求实数p的取值范围;
(3)设函数F(x)=af(x)-g(x)(a>1),若w≥F(x)对一切x∈(-1,+∞)恒成立,求实数w的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,若P,Q满足条件:(1)P,Q都在函数f(x)的图象上;(2)P,Q两点关于直线y=x对称,则称点对{P,Q}是函数f(x)的一对“可交换点对”.({P,Q}与{Q,P}看作同一“可交换点”).试问函数f(x)=
x2+3x+2(x≤0)
log2x(x>0)
的“可交换点对有(  )

查看答案和解析>>

同步练习册答案