精英家教网 > 高中数学 > 题目详情
8.用辗转相除法求210与162的最大公约数,并用更相减损术检验.

分析 用较大的数字除以较小的数字,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,以此类推,当整除时,就得到要求的最大公约数.

解答 解:∵210=1×162+48,
162=3×48+18,
48=2×18+12,
18=1×12+6,
12=2×6,
∴210与162的最大公约数为6,(6分)
检验:210-162=48,
162-48=114,
114-48=66,
66-48=18,
48-18=30,
30-18=12,
18-12=6,
12-6=6,
经检验:210与162的最大公约数为6.(12分)

点评 本题考查用辗转相除法求两个数的最大公约数,本题是一个基础题,在解题时注意数字的运算不要出错,注意与更相减损术进行比较.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若复数(1-ai)(2+i)是纯虚数(i是虚数单位,a是实数),则a=(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}是公比为d的等比数列,且a1与a2的算术平均数恰好是a3
(1)求d;
(2)设{bn}是以2为首项,d为公差的递减等差数列,其前n项和为Sn,比较Sn与bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C的对边分别为a,b,c,已知bsinA+a(cosB-$\sqrt{2}$)=0.
(1)求角B的大小;
(2)若△ABC的面积为3,a+c=3+2$\sqrt{2}$,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知sinα-2cosα=0,求$\frac{sinα+cosα}{2sinα-cosα}$的值.
(2)若f(x)=3cosx-sin2x+1,若f(x)≥a-3恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设P(x,2)是角α终边上一点,且满足sinα=$\frac{2}{3}$,则实数x=±5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)是R上的增函数,A(0,-2),B(3,2)是其图象上的两点,记不等式|f(x+2)|<2的解集M,则∁RM=(  )
A.(-2,1)B.(-1,2)C.(-∞,-2]∪[1,+∞)D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.终边与x轴重合的角α的集合是(  )
A.{α|α=2kπ,k∈Z}B.{α|α=kπ,k∈Z}C.{α|α=$\frac{kπ}{2}$,k∈Z}D.{α|α=kπ+$\frac{π}{2}$,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}kx+2,\;x≥0\\{({\frac{1}{2}})^x},\;x<0\end{array}$,若函数y=f[f(x)]-$\frac{3}{2}$有且只有3个零点,则实数k的取值范围是(-$\frac{1}{2}$,-$\frac{1}{4}$].

查看答案和解析>>

同步练习册答案