精英家教网 > 高中数学 > 题目详情
设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点分别为F1,F2,点P在椭圆上,且
PF1
PF2
=0
tan∠PF1F2=
3
3
,则该椭圆的离心率为
 
分析:先根据
PF1
PF2
=0
tan∠PF1F2=
3
3
,可得到PF1⊥PF2和∠PF1F2的值,再由|PF1|+|PF2|=|FF2|(cos30°+sin30°)=2a可确定a,c的关系,进而得到离心率的值.
解答:解:由
PF1
PF2
=0
知,PF1⊥PF2
tan∠PF1F2=
3
3
知,∠PF1F2=30°.
|PF1|+|PF2|=|FF2|(cos30°+sin30°)=(
3
+1)c=2a

e=
c
a
=
2
3
+1
=
3
-1

故答案为:
3
-1.
点评:本题是有关椭圆的焦点三角形问题,却披上了平面向量的外衣,实质是解三角形知识的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,A是椭圆上的一点,C,原点O到直线AF1的距离为
1
3
|OF1|

(Ⅰ)证明a=
2
b

(Ⅱ)求t∈(0,b)使得下述命题成立:设圆x2+y2=t2上任意点M(x0,y0)处的切线交椭圆于Q1,Q2两点,则OQ1⊥OQ2

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的动点Q,过动点Q作椭圆的切线l,过右焦点作l的垂线,垂足为P,则点P的轨迹方程为(  )
A、x2+y2=a2
B、x2+y2=b2
C、x2+y2=c2
D、x2+y2=e2

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是椭圆
x2a2
+y2=1   (a>1)
短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•即墨市模拟)设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

-1<a<-
1
2
,则椭圆
x2
a2
+
y2
(a+1)2
=1
的离心率的取值范围是(  )

查看答案和解析>>

同步练习册答案