精英家教网 > 高中数学 > 题目详情
函数f(x)=(
12
)x2-2x-3
的单调递增区间为
(-∞,1]
(-∞,1]
分析:要求函数f(x)=(
1
2
)x2-2x-3
的单调递增区间,根据复合函数的单调性可知,只有求函数t=x2-2x-3的单调递增区间即可
解答:解:令t=x2-2x-3=(x-1)2-2,在(-∞,1]单调递减,在[1,+∞)单调递增
f(t)=(
1
2
)
t
在R上单调递减
由复合函数的单调性可知,函数的单调递增区间为(-∞,1]
故答案为:(-∞,1]
点评:本题主要考查了由指数函数与二次函数复合二次的复合函数的单调区间的求解,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
2
)
x
-7
(x<0)
x
(x≥0)
,若f(a)<1
,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
(
1
2
)
x
-1
的定义域是
{x|x≤0}
{x|x≤0}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)已知函数f(x)=
(
1
2
)
x
+
3
4
x≥2
log2x,0<x<2
若函数g(x)=f(x)-k有两个不同的零点,则实数k的取值范围是
3
4
,1)
3
4
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=
1
2
(1+x)2-ln(1+x)

(1)求f(x)的单调区间;
(2)若x∈[
1
e
-1,e-1]
时,f(x)<m恒成立,求m的取值范围;
(3)若设函数g(x)=
1
2
x2+
1
2
x+a
,若g(x)的图象与f(x)的图象在区间[0,2]上有两个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
+log2
x
1-x
,设Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n-1
n
)
,n∈N*,且n≥2.
(1)求Sn
(2)已知a1=
2
3
an=
1
(Sn+1)(Sn+1+1)
,(n≥2,n∈N*),数列{an}的前n项和为Tn,若Tn<λ(Sn+1+1)对一切n∈N*都成立,求λ的取值范围.

查看答案和解析>>

同步练习册答案