精英家教网 > 高中数学 > 题目详情

已知椭圆数学公式的两个焦点为F1,F2,P为椭圆上一点,∠F1PF2=60°
(1)求椭圆离心率的取值范围;
(2)求△F1PF2的面积仅与椭圆的短轴长有关.

解:(1)设|PF1|=m,|PF2|=n
则根据椭圆的定义,得m+n=2a,….①
又∵△F1PF2中,∠F1PF2=60°
∴由余弦定理,得m2+n2-mn=4c2….②
①②联解,得
又∵
≤a2,化简整理,得a2<4c2,解之得
即椭圆离心率的取值范围是[,1)
(2)由(1),得=b2

面积表达式中的字母只含有b,可得△F1PF2的面积仅与椭圆的短轴长有关.
分析:(1)设|PF1|=m,|PF2|=n.根据椭圆的定义和余弦定理,建立关于m、n的方程组,联解可得m、n关于a、c的式子,再根据基本不等式得mn≤a2,建立关于a、c的不等式,变形整理即可得到椭圆离心率的取值范围;
(2)根据(1)中的结论,可算出△F1PF2的面积等于b2,由此可得△F1PF2的面积仅与椭圆的短轴长有关.
点评:本题给出椭圆上一点与椭圆两个焦点构成的三角形,求三角形的面积并讨论椭圆的离心率,着重考查了椭圆的定义与简单性质、基本不等式求最值和用正余弦定理解三角形等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的两个焦点为F1(-
5
,0)
F2(
5
,0)
,M是椭圆上一点,若
MF1
MF2
=0
|
MF1
|•|
MF2
|=8
,则该椭圆的方程是(  )

查看答案和解析>>

科目:高中数学 来源:2012届重庆市“名校联盟”高二第一次联考文科数学试卷(解析版) 题型:选择题

已知椭圆的两个焦点为(),(1,0),椭圆的长半轴长为2,则椭圆方程为(   )

A.                           B.

C.                          D.

 

查看答案和解析>>

科目:高中数学 来源:2012届度安徽省泗县高三第一学期期中文科数学试卷 题型:解答题

已知椭圆的两个焦点为F1、F2,椭圆上一点满足

(1)求椭圆的方程;

(2)若直线与椭圆恒有两上不同的交点A、B,且(O是坐标原点),求k的范围。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012年浙江省高二第一学期期中考试理科数学 题型:解答题

((本小题10分) 已知椭圆的两个焦点为,点在椭圆G上,且,且,斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).

    (1)求椭圆G的方程;

    (2)求的面积.

 

 

查看答案和解析>>

科目:高中数学 来源:2013届陕西省高二上学期期末考试理科数学 题型:选择题

已知椭圆的两个焦点为是椭圆上一点,

,则该椭圆的方程是(  )

 A、  B、  C、  D、

 

 

查看答案和解析>>

同步练习册答案