精英家教网 > 高中数学 > 题目详情
如图,已知正四棱柱ABCD-A1B1C1D1 ,AB=1 ,AA1=2 .点E 为CC1的中点,点F 为BD1的中点,求点D1到平面BDE 的距离。
解:以D 为原点,建立如图所示的直角坐标系,
则D(O,0,0),B(1,1,O),E(0,1,1),D.(0,0,2),
=(-1,-1,0),=(-1,0,1),=(-1,-1,2),
设平面BDE的法向量为n=(x,y,z),



∴不妨设n=(1,-1,1),
则点D1到平面BDE的距离d=
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知正四棱柱ABCD-A1B1C1D1,点E在棱D1D上,截面EAC∥D1B,且面EAC与底面ABCD所成的角为45°,AB=a.
(1)求截面EAC的面积;
(2)求异面直线A1B1与AC之间的距离;
(3)求三棱锥B1-BAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正四棱柱ABCD-A1B1C1D1 的底面边长为3,侧棱长为4,连接A1B,过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E.
(1)求证:D1B⊥平面AEC;
(2)求二面角B-AE-C的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省泰安市新泰市新汶中学高二(上)期末数学模拟试卷(理科)(解析版) 题型:解答题

如图,已知正四棱柱ABCD-A1B1C1D1 的底面边长为3,侧棱长为4,连接A1B,过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E.
(1)求证:D1B⊥平面AEC;
(2)求二面角B-AE-C的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:1999年全国统一高考数学试卷(文科)(解析版) 题型:解答题

如图,已知正四棱柱ABCD-A1B1C1D1,点E在棱D1D上,截面EAC∥D1B,且面EAC与底面ABCD所成的角为45°,AB=a.
(1)求截面EAC的面积;
(2)求异面直线A1B1与AC之间的距离;
(3)求三棱锥B1-BAC的体积.

查看答案和解析>>

科目:高中数学 来源:1999年广东省高考数学试卷(解析版) 题型:解答题

如图,已知正四棱柱ABCD-A1B1C1D1,点E在棱D1D上,截面EAC∥D1B,且面EAC与底面ABCD所成的角为45°,AB=a.
(1)求截面EAC的面积;
(2)求异面直线A1B1与AC之间的距离;
(3)求三棱锥B1-BAC的体积.

查看答案和解析>>

同步练习册答案