精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+c,(x∈[-1,2]),且函数f(x)在x=1和x=-
23
处都取得极值.
(1)求实数a,b的值;
(2)求函数f(x)的极值;
(3)若对任意x∈[-1,2],f(x)<c2恒成立,求实数c的取值范围.
分析:(1)根据所给的函数的解析式,对函数求导,使得导函数等于0,得到关于a,b的关系式,解方程组即可求出a,b的值;
(2)对函数求导,写出函数的导函数等于0的x的值,分析函数的单调性,求出极值点,代入可得函数f(x)的极值;
(3)若对任意x∈[-1,2],f(x)<c2恒成立,则函数f(x)在[-1,2]上的最大值<c2,构造关于c的不等式,解不等式可得实数c的取值范围.
解答:(1)解:(1)f(x)=x3+ax2+bx+c,
f′(x)=3x2+2ax+b        
由f′(-
2
3
)=
12
9
-
4
3
a+b=0,
f′(1)=3+2a+b=0   
得a=-
1
2
,b=-2                    
(2)由(1)知f′(x)=3x2-x-2,
x (-1,-
2
3
-
2
3
(-
2
3
,1)
1 (1,2)
f′(x) + 极大值 - 极小值 +
f(x) c+
22
27
c-
3
2
∴函数f(x)的极大值为c+
22
27
,极小值为c-
3
2

(3)∵f(2)=2+c
∴x∈[-1,2]时,f(x)的最大值为f(2)=2+c
∵对于任意的x∈[-1,2],f(x)<c2恒成立,
∴只需2+c<c2
解得c<-1或c>2.
点评:本题考查的知识点是函数在某点取得极值的条件,导数的最大值、最小值问题中的应用,是导数的综合应用问题,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案