精英家教网 > 高中数学 > 题目详情
    如图,斜三棱柱ABCA1B1C1中,侧面AA1C1C⊥底面ABC,∠ABC=90°,BC=2 AA1A1CAA1=A1C.

I)求侧棱AA1与底面ABC所成角的大小;

II)求侧面AA1B1B与底面ABC所成二面角的大小;

(Ⅲ)求点C到侧面AA1B1B的距离.

答案:
解析:

答案:解:(I)取AC的中点D,连结A1D.

∵AA1=A1C,∴A1D⊥AC.  又∵侧面AA1C1C⊥底面ABC,

∴A1D⊥面ABC,∴∠A1AD为侧棱AA1与底面ABC所成的角.∵AA1⊥A1C,AA1=A1C,∴∠A1AD=45°,即AA1与底面ABC所成的角等于45°.…4分

(II)作DE⊥AB于E,连结A1E.

∵A1D⊥面ABC,DE⊥AB,∴AB⊥A1E,∴∠A1ED为侧面AA1B1B与底面ABC所成二面角的平面角.∵BC⊥AB,DE⊥AB,∴DE//BC.

∵AD=DC,∴.在等腰直角三角形AA1C中,

, ∴∠A1ED=60°.(III)解法一:设点C到侧面AA1B1B的距离为d,连结A1B.

解法二:作DH⊥A1E于H,

∵DE⊥AB,AB⊥A1E,∴AB⊥平面A1DE,

∴AB⊥DH,又A1E⊥DH,∴DH⊥平面A1AB,

∵D为AC的中点,∴点C到侧面AA1B1B的距离2DH,

,∴点C到侧面AA1B1B的距离等于.

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知如图,斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2
3
,且AA1⊥A1C,AA1=A1C.
(1)求侧棱A1A与底面ABC所成角的大小;
(2)求侧面A1ABB1与底面ABC所成二面角的大小;
(3)求顶点C到侧面A1ABB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,斜三棱柱ABC-A1B1C1中,A1C1⊥BC1,AB⊥AC,AB=3,AC=2,侧棱与底面成60°角.
(1)求证:AC⊥面ABC1
(2)求证:C1点在平面ABC上的射影H在直线AB上;
(3)求此三棱柱体积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,斜三棱柱ABC-A1B1C1的侧面AA1C1C是面积为
3
2
的菱形,∠ACC1为锐角,侧面ABB1A1⊥侧面AA1C1C,且A1B=AB=AC=1.
(Ⅰ)求证:AA1⊥BC1
(Ⅱ)求三棱锥A1-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,斜三棱柱ABC-A1B1C1的底面是直角三角形,AC⊥CB,∠ABC=45°,侧面A1ABB1是边长为a的菱形,且垂直于底面ABC,∠A1AB=60°,E、F分别是AB1、BC的中点.
(1)求证EF∥平面A1ACC1
(2)求EF与侧面A1ABB1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•潍坊二模)如图,斜三棱柱ABC-A1B1C1,侧面BB1C1C⊥底面ABC,△BC1C是等边三角形,AC⊥BC,AC=BC=4.
(1)求证:AC⊥B
C
 
1

(2)设D为BB1的中点,求二面角D-AC-B的余弦值.

查看答案和解析>>

同步练习册答案