精英家教网 > 高中数学 > 题目详情
椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的中心、右焦点、右顶点及在准线与x轴的交点依次为O、F、G、H,则|
FG
OH
|
的最大值为(  )
分析:根据椭圆的标准方程,结合焦点坐标和准线方程的公式,可得|FG|=a-c,|OH|=
a2
c
,所以|
FG
OH
|
=
ac-c2
a2
=
c
a
-(
c
a
)
2
,最后根据二次函数的性质结合
c
a
∈(0,1)
,可求出|
FG
OH
|
的最大值.
解答:解:∵椭圆方程为
x2
a2
+
y2
b2
=1 (a>b>0)

∴椭圆的右焦点是F(c,0),右顶点是G(a,0),右准线方程为x=
a2
c
,其中c2=a2-b2
由此可得H(
a2
c
,0),|FG|=a-c,|OH|=
a2
c

|
FG
OH
|
=
a-c
a2
c
=
ac-c2
a2
=
c
a
-(
c
a
)
2
=-(
c
a
-
1
2
2+
1
4

c
a
 ∈(0,1)

∴当且仅当
c
a
=
1
2
时,|
FG
OH
|
的最大值为
1
4

故选C
点评:本题根据椭圆的焦点坐标和准线方程,求线段比值的最大值,着重考查了椭圆的基本概念的简单性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,求证:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF1的中点,求证:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中数学 来源: 题型:

设 A(x1,y1)、B(x2,y2)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的两点,O为坐标原点,向量
m
=(
x1
a
y1
b
),
n
=(
x2
a
y2
b
)
m
n
=0

(1)若A点坐标为(a,0),求点B的坐标;
(2)设
OM
=cosθ•
OA
+sinθ•
OB
,证明点M在椭圆上;
(3)若点P、Q为椭圆 上的两点,且
PQ
OB
,试问:线段PQ能否被直线OA平分?若能平分,请加以证明;若不能平分,请说明理由.

查看答案和解析>>

科目:高中数学 来源:四川 题型:解答题

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

同步练习册答案