精英家教网 > 高中数学 > 题目详情

已知函数.

(Ⅰ)若,求在点处的切线方程;

(Ⅱ)求函数的极值点.

 

【答案】

(Ⅰ);(Ⅱ)当,的极小值点为,极大值点为;当,的极小值点为;当,的极小值点为.

【解析】

试题分析:(Ⅰ)时,,先求切线斜率,又切点为,利用直线的点斜式方程求出直线方程;(Ⅱ)极值点即定义域内导数为0的根,且在其两侧导数值异号,首先求得定义域为,再去绝对号,分为两种情况,其次分别求的根并与定义域比较,将定义域外的舍去,并结合图象判断其两侧导数符号,进而求极值点;

试题解析:的定义域为.

(),则,此时.因为,所以,所以切线方程为,即.

(Ⅱ)由于.

⑴ 当时,

,得(舍去),

且当时,;当时,

所以上单调递减,在上单调递增,的极小值点为.

⑵ 当时,.

① 当时,,令,得,(舍去).

,即,则,所以上单调递增;

,即, 则当时,;当时,,所以在区间上是单调递减,在上单调递增,的极小值点为.

② 当时,.

,得,记

,即时,,所以上单调递减;

,即时,则由

时,;当时,;当时,

所以在区间上单调递减,在上单调递增;在上单调递减.

综上所述,,的极小值点为,极大值点为

,的极小值点为

,的极小值点为.

考点:1、导数的几何意义;2、函数的极值和最值;3、导数在函数单调性上的应用.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log
13
x
,若f(a3)+f(b3)=6,则f(ab)的值等于
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)、g(x)的定义域分别为M,N,且M⊆N,若对任意的x∈M,都有g(x)=f(x),则称g(x)是f(x)的“拓展函数”.已知函数f(x)=
1
3
log2x
,若g(x)是f(x)的“拓展函数”,且g(x)是偶函数,则符合条件的一个g(x)的解析式是
g(x)=
1
3
log2|x|
(其它符合条件的函数也可)
g(x)=
1
3
log2|x|
(其它符合条件的函数也可)

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.

已知函数

(1)若,求的值;

(2)若对于恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省海林市高二下学期期中考试理科数学试卷(解析版) 题型:解答题

已知函数

(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求,的值;

(2)当时,若函数在区间[,2]上的最大值为28,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省如东县高三12月四校联考文科数学试卷(解析版) 题型:解答题

(本小题满分16分)

已知函数

(1)若上的最大值为,求实数的值;

(2)若对任意,都有恒成立,求实数的取值范围;

(3)在(1)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。

 

查看答案和解析>>

同步练习册答案