精英家教网 > 高中数学 > 题目详情
椭圆
x2
9
+
y2
4
=1
的两焦点为F1、F2,过F1作直线交椭圆于A、B两点,则△ABF2的周长为
12
12
分析:根据椭圆的标准方程,求出a的值,由△ABF2的周长是 (|AF1|+|AF2|)+(|BF1|+|BF2|)=2a+2a 求出结果.
解答:解:椭圆
x2
9
+
y2
4
=1
的a=3,b=2,
△ABF2的周长是 (|AF1|+|AF2|)+(|BF1|+|BF2|)=2a+2a=4a=12,
故答案为:12.
点评:本题考查椭圆的定义、标准方程,以及简单性质的应用,利用椭圆的定义是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2为椭圆
x2
9
+
y2
4
=1
的两个焦点,P为椭圆上的一点,已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,求
|PF1|
|PF2|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2是椭圆
x2
9
+
y2
4
=1
的两个焦点,P是椭圆上的点,且丨PF1丨:丨PF2丨=2:1,则△PF1F2的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
9
+
y2
4
=1
内有一点P(2,1),过点P作直线交椭圆于A、B两点.
(1)若弦AB恰好被点P平分,求直线AB的方程;
(2)当原点O到直线AB的距离取最大值时,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P(x,y)为椭圆
x2
9
+
y2
4
=1
上的动点,A(a,0)(0<a<3)为定点,已知|AP|的最小值为1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2是椭圆
x2
9
+
y2
4
=1
的两个焦点,P是椭圆上一点,若△PF1F2是直角三角形,且|PF1|>|PF2|,则
|PF1|
|PF2|
的值为(  )

查看答案和解析>>

同步练习册答案