精英家教网 > 高中数学 > 题目详情

椭圆上一点到两焦点的距离之积为,求取最大值时的点的坐标。


解析:

。∴最大时点的坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知焦点在x轴上、中心在原点的椭圆上一点到两焦点的距离之和为4,若该椭圆的离心率
3
2
,则椭圆的方程是(  )
A、
x2
4
+y2=1
B、x2+
y2
4
=1
C、
x2
4
+
y2
3
=1
D、
x2
3
+
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

求适合下列条件的椭圆的标准方程:
(1)焦点在y轴上,焦距是4,且经过点M(3,2);
(2)焦距是10,且椭圆上一点到两焦点的距离的和为26.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的两个焦点分别是F1(-4,0),F2(4,0)且椭圆上一点到两焦点的距离之和为12,则此椭圆的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

求适合下列条件的椭圆的标准方程
(1)两个焦点坐标分别是(-5,0),(5,0),椭圆上一点到两焦点的距离之和为26
(2)与椭圆4x2+9y2=36有相同的焦点,且离心率为
5
5

查看答案和解析>>

科目:高中数学 来源:2010-2011学年云南省德宏州高三高考复习数学试卷 题型:选择题

已知焦点在轴上、中心在原点的椭圆上一点到两焦点的距离之和为,若该椭圆的离心率,则椭圆的方程是(    )

A.   B.   C.    D.

 

查看答案和解析>>

同步练习册答案