精英家教网 > 高中数学 > 题目详情
过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
上任意一点P,作与实轴平行的直线,交两渐近线于M、N两点,若
PM
PN
=2b2
,则该双曲线的离心率为(  )
分析:设双曲线上的P(x0,y0),可得
x
2
0
a2
-
y
2
0
b2
=1
.再利用数量积运算和离心率计算公式即可得出.
解答:解:设双曲线上的P(x0,y0),则
x
2
0
a2
-
y
2
0
b2
=1
,∴
x
2
0
=a2+
a2
b2
y
2
0

联立
y=y0
y=
b
a
x
,解得x=
ay0
b
,取M(
ay0
b
y0)

同理可得N(-
ay0
b
y0)

PM
PN
=(
ay0
b
-x0,0)
(-
ay0
b
-x0,0)
=
x
2
0
-
a2
y
2
0
b2
=a2
∴a2=2b2
e=
c
a
=
1+
b2
a2
=
1+
1
2
=
6
2

故选C.
点评:本题考查了双曲线的标准方程、数量积运算和离心率计算公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的一个焦点F引它的渐近线的垂线,垂足为M,延长FM交y轴于E,若FM=ME,则该双曲线的离心率为(  )
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
的左焦点F作⊙O:x2+y2=a2的两条切线,记切点为A,B,双曲线左顶点为C,若∠ACB=120°,则双曲线的渐近线方程为(  )
A、y=±
3
x
B、y=±
3
3
x
C、y=±
2
x
D、y=±
2
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点F引它到渐进线的垂线,垂足为M,延长FM交y轴于E,若
FM
=2
ME
,则该双曲线离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点F作一条渐近线的平行线,该平行线与y轴交于点P,若|OP|=|OF|,则双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案