精英家教网 > 高中数学 > 题目详情
函数f(x)定义在整数集上,且有f(x)=则f(999)等于(    )

A.996              B.997                  C.998                D.999

思路解析:∵999<1 000,

∴f(999)=f[f(1 004)].

∵f(1 004)=1 001,

∴f[f(1 004)]=f(1 001)=1 001-3=998.

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于任意实数x,符号[x]表示不超过x的最大整数,如[4.3]=4、[-2.3]=-3、[4]=4,函数f(x)=[x]叫做“取整函数”,也叫做高斯(Gauss)函数.这个函数在数学本身和生产实践中都有广泛的应用.
从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.
(1)写出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,正确的命题是
②④
②④

①定义在R上的函数f(x),函数y=f(x-1)与y=f(1-x)的图象关于y轴对称;
②若f(x)=9x-(k+1)3x+1>0恒成立,则k的范围是(-∞,1);
③已知f(x)=1+log2x(1≤x≤16),则函数y=f2(x)+f(x2)的值域是[2,34];
④[x]表示不超过x的最大整数,当x是整数时[x]就是x,这个函数y=[x]叫做“取整函数”.那么[log21]+[log22]+[log23]+[log24]+…+[log2128]=649.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西北海市合浦七中高一(上)期中数学试卷(解析版) 题型:解答题

对于任意实数x,符号[x]表示不超过x的最大整数,如[4.3]=4、[-2.3]=-3、[4]=4,函数f(x)=[x]叫做“取整函数”,也叫做高斯(Gauss)函数.这个函数在数学本身和生产实践中都有广泛的应用.
从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.
(1)写出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西北海市合浦七中高一(上)期中数学试卷(解析版) 题型:解答题

对于任意实数x,符号[x]表示不超过x的最大整数,如[4.3]=4、[-2.3]=-3、[4]=4,函数f(x)=[x]叫做“取整函数”,也叫做高斯(Gauss)函数.这个函数在数学本身和生产实践中都有广泛的应用.
从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.
(1)写出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省成都外国语学校高一(上)期中数学试卷(解析版) 题型:填空题

给出下列四个命题,正确的命题是   
①定义在R上的函数f(x),函数y=f(x-1)与y=f(1-x)的图象关于y轴对称;
②若f(x)=9x-(k+1)3x+1>0恒成立,则k的范围是(-∞,1);
③已知f(x)=1+log2x(1≤x≤16),则函数y=f2(x)+f(x2)的值域是[2,34];
④[x]表示不超过x的最大整数,当x是整数时[x]就是x,这个函数y=[x]叫做“取整函数”.那么[log21]+[log22]+[log23]+[log24]+…+[log2128]=649.

查看答案和解析>>

同步练习册答案