精英家教网 > 高中数学 > 题目详情

证明:椭圆9x2+25y2=225与双曲线x2-15y2=15的焦点相同.

答案:
解析:

  

  ;即证


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的左、右两个焦点,A、B为两个顶点;已知顶点B(0,
3
)
到F1、F2两点的距离之和为4.
(1)求椭圆C的方程;
(2)证明:椭圆C上任意一点M(x0,y0)到右焦点F2的距离的最小值为1.
(3)作AB的平行线交椭圆C于P、Q两点,求弦长|PQ|的最大值,并求|PQ|取最大值时△F1PQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•青岛一模)已知椭圆9x2+2y2=18上任意一点P,由P向x轴作垂线段PQ,垂足为Q,点M在线段PQ上,且
PM
=2
MQ
,点M的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)若过定点F(0,2)的直线l交曲线E于不同的两点G,H(点G在点F,H之间),且满足
FG
=
1
2
FH
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,点A、B为椭圆
x2
4
+
y2
2
=1
长轴的两个端点,点M为该椭圆上位于第一象限内的任意一点,直线AM、BM分别与直线l:x=2
2
相交于点P、Q.
(1)若点P、Q关于x轴对称,求点M的坐标;
(2)证明:椭圆右焦点F在以线段PQ为直径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)求经过点(-
3
2
5
2
),且与椭圆9x2+5y2=45有共同焦点的椭圆方程;
(Ⅱ)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,点P(3,0)在该椭圆上,求椭圆的方程.

查看答案和解析>>

同步练习册答案