精英家教网 > 高中数学 > 题目详情
直线y=x+b与抛物线x2=2y交于A、B两点,O为坐标原点,且OA⊥OB,则b=______.
设A(x1,y1)B(x2,y2
联立方程可得
y=x+b
x2=2y
即x2-2x-2b=0有两个不同于原点的解
∴x1+x2=2,x1x2=-2b,△=4+8b>0
∵OA⊥OB?
OA
OB
=0

∴x1x2+y1y2=0?x1x2+(x1+b)(x2+b)=0
整理可得2x1x2+b(x1+x2)+b2=0
∴b2-2b=0
∴b=0(舍)或b=2
故答案为:2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直L1:2x-y=0,L2:x-2y=0.动圆(圆心为M)被L1L2截得的弦长分别为8,16.
(Ⅰ)求圆心M的轨迹方程M;
(Ⅱ)设直线y=kx+10与方程M的曲线相交于A,B两点.如果抛物y2=-2x上存在点N使得|NA|=|NB|成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011年江西省高二下学期第一次月考数学文卷 题型:解答题

(本小题满分13分)

已知双曲线C: =1(a>0,b>0)的离心率为焦点到渐近线的距离为

(1)求双曲线C的方程;

(2)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在抛物

线y2=4 x上,求m的值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直L1:2x-y=0,L2:x-2y=0.动圆(圆心为M)被L1L2截得的弦长分别为8,16.
(Ⅰ)求圆心M的轨迹方程M;
(Ⅱ)设直线y=kx+10与方程M的曲线相交于A,B两点.如果抛物y2=-2x上存在点N使得|NA|=|NB|成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年河南省许昌市长葛三高高考数学调研试卷1(理科)(解析版) 题型:解答题

已知直L1:2x-y=0,L2:x-2y=0.动圆(圆心为M)被L1L2截得的弦长分别为8,16.
(Ⅰ)求圆心M的轨迹方程M;
(Ⅱ)设直线y=kx+10与方程M的曲线相交于A,B两点.如果抛物y2=-2x上存在点N使得|NA|=|NB|成立,求k的取值范围.

查看答案和解析>>

同步练习册答案