精英家教网 > 高中数学 > 题目详情
已知函数(a,b∈R)的图象在点(1,f(1))处的切线在y轴上的截距为3,若f(x)>x在(1,+∞)上恒成立,则a的取值范围是( )
A.(0,1]
B.
C.
D.[1,+∞)
【答案】分析:先根据图象在点(1,f(1))处得切线在y轴上的截距为3,求得b=3-2a,再将f(x)>x在(1,+∞)上恒成立,转化为f(x)-x>0在(1,+∞)上恒成立,构造新函数,再进行分类讨论,即可确定a的取值范围.
解答:解:由题意,f(1)=2a+b∵函数f(x)=ax++b(a,b∈R)
∴f′(x)=a-
∴f′(1)=0;
所以图象在点(1,f(1))处的切线为:y=f(1)=2a+b=3,
∴b=3-2a 若f(x)>x在(1,+∞)上恒成立,即:f(x)-x>0在(1,+∞)上恒成立;
设g(x)=f(x)-x=(a-1)x++3-2a,
∴g′(x)=a-1-,a≤0时,x2>1,0<<1,∴0<-<-a,∴a-1-<-1<0;
0<a<1时,a-1<0,∴-<0,∴a-1-<0;
所以a<1时,g′(x)<0,g(x)在(1,+∞)上是减函数,
∴g(x)>0不会恒成立,不满足题意;
把a=1代入可得:g(x)=+1>0在(1,+∞) 上恒成立,符合条件;
a>1时,g′(x)=0 得:x=
当x>时,g′(x)>0;1<x<时,g′(x)<0,
所以g(x)min=g()>0即可,
即:(a-1)++3-2a>0
∴2>2a-3.
①当1<a≤时,上式恒成立;
②当a>时,平方得:4a2-4a>4a2-12a+9 即:a>
∴a>时,符合题意;综上可知:a的取值范围是:[1,+∞),
故答案为:[1,+∞).
点评:本题重点考查导数知识的运用,考查恒成立问题,解题时正确分类,利用导数确定函数的单调性是关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y﹣3=0.

(1)求a,b的值;

(2)求函数f(x)的单调区间和极值;

(3)求函数f(x)在区间[﹣2,5]上的最大值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省黄冈市黄州一中高三(上)9月月考数学试卷(解析版) 题型:解答题

已知函数(a,b∈R)
(1)若y=f(x)图象上的点处的切线斜率为-4,求y=f(x)的极大值;
(2)若y=f(x)在区间[-1,2]上是单调减函数,求a+b的最小值.

查看答案和解析>>

科目:高中数学 来源:《第1章 导数及其应用》2010年单元测试卷(3)(解析版) 题型:解答题

已知函数(a,b∈R)
(1)若y=f(x)图象上的点处的切线斜率为-4,求y=f(x)的极大值;
(2)若y=f(x)在区间[-1,2]上是单调减函数,求a+b的最小值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省苏州市六校联合高三调研数学试卷(解析版) 题型:解答题

已知函数(a、b∈R),
(Ⅰ)若f(x)在R上存在最大值与最小值,且其最大值与最小值的和为2680,试求a和b的值;
(Ⅱ)若f(x)为奇函数:
(1)是否存在实数b,使得f(x)在为增函数,为减函数,若存在,求出b的值,若不存在,请说明理由;
(2)如果当x≥0时,都有f(x)≤0恒成立,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省南通市海安高级中学高三(下)3月月考数学试卷(理科)(解析版) 题型:解答题

已知函数(a、b∈R),
(Ⅰ)若f(x)在R上存在最大值与最小值,且其最大值与最小值的和为2680,试求a和b的值;
(Ⅱ)若f(x)为奇函数:
(1)是否存在实数b,使得f(x)在为增函数,为减函数,若存在,求出b的值,若不存在,请说明理由;
(2)如果当x≥0时,都有f(x)≤0恒成立,试求b的取值范围.

查看答案和解析>>

同步练习册答案