精英家教网 > 高中数学 > 题目详情
(2013•太原一模)定义在R上的函数f(x)满足f(x)=f(5-x),且(
5
2
-x)f′(x)<0
,已知x1<x2,x1+x2<5,则(  )
分析:先确定函数的对称轴,再确定函数的对称性,进而根据x1<x2,x1+x2<5,即可得到结论.
解答:解:∵函数f(x)满足f(x)=f(5-x),
∴函数图象关于直线x=
5
2
对称
(
5
2
-x)f′(x)<0

∴函数在(-∞,
5
2
)上单调减,在(
5
2
,+∞)上单调增
∵x1<x2,x1+x2<5,
∴若x1<x2
5
2
,根据函数在(-∞,
5
2
)上单调减,可得f(x1)>f(x2
若x1
5
2
<x2,∵x1+x2<5,移项整理得
5
2
-x1>x2-
5
2
,从而可知x1比x2离对称轴远,结合函数的单调性可得f(x1)>f(x2
综上,f(x1)>f(x2
故选B.
点评:本题考查函数的对称性、单调性,考查导数知识的运用,考查学生分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•太原一模)x、y满足约束条件
x+y≥1
x-y≥-1
2x-y≤2
,若目标函数z=ax+by(a>0,b>0)的最大值为7,则
3
a
+
4
b
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线L的参数方程为:
x=-2+
2
2
t
y=-4+
2
2
t
,直线L与曲线C分别交于M,N.
(Ⅰ)写出曲线C和直线L的普通方程;    
(Ⅱ)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)复数
i
1-i
的共轭复数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知向量
a
b
满足|
a
|=1,|
b
|=
2
,(
a
-
b
)⊥
a
,向量
a
b
的夹角为
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知函数f(x)=|2x+1|+|2x-3|.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若关于x的不等式f(x)<|a-1|的解集非空,求实数a的取值范围.

查看答案和解析>>

同步练习册答案