精英家教网 > 高中数学 > 题目详情
已知F1=F2=1,Fn+2=Fn+1+Fn,n∈N+,用程序框图表示求F12的过程.

解析:首先要明确怎样才能得到F12,找出能使这个过程继续做下去和停止的条件.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,A、B为过F1的直线与椭圆的交点,且△F2AB的周长为4
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)判断
1
|F1A|
+
1
|F1B|
是否为定值,若是求出这个值,若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-1,0)、F2(1,0)为椭圆的焦点,且直线x+y-
7
=0
与椭圆相切.
(Ⅰ)求椭圆方程;
(Ⅱ)过F1的直线交椭圆于A、B两点,求△ABF2的面积S的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-1,0),F2(1,0)是椭圆
x2
a2
+
y2
b2
=1的两个焦点,点G与F2关于直线l:x-2y+4=0对称,且GF1与l的交点P在椭圆上.
(I)求椭圆方程;
(II)若P、M(x1,y1),N(x2,y2)是椭圆上的不同三点,直线PM、PN的倾斜角互补,问直线MN的斜率是否是定值?如果是,求出该定值,如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-1,0),F2(1,0),坐标平面上一点P满足:△PF1F2的周长为6,记点P的轨迹为C1.抛物线C2以F2为焦点,顶点为坐标原点O.
(Ⅰ)求C1,C2的方程;
(Ⅱ)若过F2的直线l与抛物线C2交于A,B两点,问在C1上且在直线l外是否存在一点M,使直线MA,MF2,MB的斜率依次成等差数列,若存在,请求出点M的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案