精英家教网 > 高中数学 > 题目详情
直线l:x+
3
y-3=0的倾斜角α为(  )
分析:由直线的方程易得斜率,进而可得倾斜角.
解答:解:由题意可得直线的斜率k=-
1
3
=-
3
3

即tanα=-
3
3
,故α=
6

故选D
点评:本题考查直线的倾斜角,由直线方程得出斜率是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆Γ的中心在原点O,焦点在x轴上,直线l:x+
3
y-
3
=0与椭圆Γ交于A、B两点,|AB|=2,且∠AOB=
π
2

(1)求椭圆Γ的方程;
(2)若M、N是椭圆Γ上的两点,且满足
OM
ON
=0,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=0
,若过A,Q,F2三点的圆恰好与直线l:x-
3
y-3=0
相切.过定点M(0,2)的直线l1与椭圆C交于G,H两点(点G在点M,H之间).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l1的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由;
(Ⅲ)若实数λ满足
MG
MH
,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=
0

(1)若过A.Q.F2三点的圆恰好与直线l:x-
3
y-3=0相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M.N两点.试证明:
1
|F2M|
+
1
|F2N|
为定值;②在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6mx-2(m-1)y+10m2-2m-24=0,直线l:x-3y-3=0,m∈R,O为坐标原点.
(Ⅰ) 求证:任何一条与直线?平行且与圆C相交的直线被圆C截得的弦长与m无关;
(Ⅱ) 当m=-1时,圆C与垂直于直线?的一直线l1交于A、B两点,若OA⊥OB,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1,a>b>0的左焦点为F1,上顶点为A,过点A与AF1垂直的直线分别交椭圆和x轴正半轴于P、Q两点,且P分向量
AQ
所成的比为λ.
(1)当λ∈(1,2)时,探求椭圆离心率(
1
e
-e)2的取值范围;
(2)当λ=
8
5
时,过A、Q、F1三点的圆恰好与直线L:x+
3
y+3=0相切,求椭圆的方程.

查看答案和解析>>

同步练习册答案