精英家教网 > 高中数学 > 题目详情
.设函数f(x)=-cos2x-4tsin
x
2
cos
x
2
+4t3+t2-3t+4
,x∈R,
其中|t|≤1,将f(x)的最小值记为g(t).
(1)求g(t)的表达式;
(2)对于区间[-1,1]中的某个t,是否存在实数a,使得不等式g(t)≤
4a
1+a2
成立?如果存在,求出这样的a及其对应的t;如果不存在,请说明理由.
(1)f(x)=-cos2x-4tsin
x
2
cos
x
2
+4t3+t2-3t+4
=sin2x-1-2tsinx+4t3+t2-3t+4=sin2x-2tsinx+t2+4t3-3t+3=(sinx-t)2+4t3-3t+3.
由(sinx-t)2≥0,|t|≤1,故当sinx=t时,f(x)有最小值g(t),即
g(t)=4t3-3t+3.
(2)我们有g'(t)=12t2-3=3(2t+1)(2t-1),-1<t<1.
列表如下:
t (-1,-
1
2
-
1
2
(-
1
2
1
2
1
2
1
2
,1)
g'(t) + 0 - 0 +
G(t) 极大值g(-
1
2
极小值g(
1
2
由此可见,g(t)在区间(-1,-
1
2
)和(
1
2
,1)单调增加,在区间(-
1
2
1
2
)单调减小,极小值为g(
1
2
)=2,
又g(-1)=-4-(-3)+3=2
故g(t)在[-1,1]上的最小值为2
注意到:对任意的实数a,
4a
1+a2
=
4
a+
1
a
∈[-2,2]
当且仅当a=1时,
4a
1+a2
=2,对应的t=-1或
1
2

故当t=-1或
1
2
时,这样的a存在,且a=1,使得g(t)≥
4a
1+a2
成立.
而当t∈(-1,1]且t≠
1
2
时,这样的a不存在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=3sin(-2x+
π
4
)
的图象为C,有下列四个命题:
①图象C关于直线x=-
8
对称:
②图象C的一个对称中心是(
8
,0)

③函数f(x)在区间[
π
8
8
]
上是增函数;
④图象C可由y=-3sin2x的图象左平移
π
8
得到.其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
2
x2-tx+3lnx,g(x)=
2x+t
x2-3
,已知a,b为函数f(x)的极值点(0<a<b).
(1)求函数g(x)在区间(-∞,-a)上单调区间,并说明理由;
(2)若曲线g(x)在x=1处的切线斜率为-4,且方程g(x)-m=0有两上不等的负实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-
1
2
ax2-bx

(1)当a=b=
1
2
时,求f(x)的最大值;
(2)当a=0,b=-1时,方程2mf(x)=x2有唯一实数解,求正数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-
12
ax2-bx

(I)若x=1是f(x)的极大值点,求a的取值范围;
(II)当a=0,b=-1时,方程2mf(x)=x2中唯一实数解,求正数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x2x+1
,g(x)=(a+2)x+5-3a.
(1)求函数f(x)在区间[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的取值范围..

查看答案和解析>>

同步练习册答案