精英家教网 > 高中数学 > 题目详情

设M()为抛物线C:上一点,F为抛物线C的焦点,以F为圆心、为半径的圆和抛物线C的准线相交,则的取值范围是

    (A)(0,2)    (B)[0,2]    (C)(2,+∞)    (D)[2,+∞)

【答案】C

【解析】设圆的半径为r,因为F(0,2)是圆心, 抛物线C的准线方程为,由圆与准线相切知4<r,因为点M()为抛物线C:上一点,所以有,又点M()在圆 ,所以,所以,即有,解得, 又因为, 所以, 选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设M,N为抛物线C:y=x2上的两个动点,过M,N分别作抛物线C的切线l1,l2,与x轴分别交于A,B两点,且l1∩l2=P,若|AB|=1,
(1)若|AB|=1,求点P的轨迹方程
(2)当A,B所在直线满足什么条件时,P的轨迹为一条直线?(请千万不要证明你的结论)
(3)在满足(1)的条件下,求证:△MNP的面积为一个定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设M,N为抛物线C:y=x2上的两个动点,过M,N分别作抛物线C的切线l1,l2,与x轴分别交于A,B两点,且l1∩l2=P,AB=1,则
(Ⅰ)求点P的轨迹方程
(Ⅱ)求证:△MNP的面积为一个定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练16练习卷(解析版) 题型:选择题

M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,F为圆心、|FM|为半径的圆和抛物线C的准线相交,y0的取值范围是(  )

(A)(0,2) (B)[0,2]

(C)(2,+) (D)[2,+)

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设M,N为抛物线C:y=x2上的两个动点,过M,N分别作抛物线C的切线l1,l2,与x轴分别交于A,B两点,且l1∩l2=P,若|AB|=1,
(1)若|AB|=1,求点P的轨迹方程
(2)当A,B所在直线满足什么条件时,P的轨迹为一条直线?(请千万不要证明你的结论)
(3)在满足(1)的条件下,求证:△MNP的面积为一个定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源:广州一模 题型:解答题

设M,N为抛物线C:y=x2上的两个动点,过M,N分别作抛物线C的切线l1,l2,与x轴分别交于A,B两点,且l1∩l2=P,若|AB|=1,
(1)若|AB|=1,求点P的轨迹方程
(2)当A,B所在直线满足什么条件时,P的轨迹为一条直线?(请千万不要证明你的结论)
(3)在满足(1)的条件下,求证:△MNP的面积为一个定值,并求出这个定值.

查看答案和解析>>

同步练习册答案