精英家教网 > 高中数学 > 题目详情
已知各项均为正数的数列{an}的前n项和为Sn,且Sn、an
1
2
成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若
a2n
=2-bn
,设Cn=
bn
an
,求数列{Cn}的前项和Tn
(Ⅰ) 由题意知2an=Sn+
1
2
an>0

当n=1时,2a1=a1+
1
2
a1=
1
2

n≥2时,Sn=2an-
1
2
Sn-1=2an-1-
1
2

两式相减得an=2an-2an-1(n≥2),整理得:
an
an-1
=2
(n≥2)
∴数列{an}是
1
2
为首项,2为公比的等比数列.an=a12n-1=
1
2
×2n-1=2n-2

(Ⅱ)
a2n
=2-bn=22n-4

∴bn=4-2n
Cn=
ba
aa
=
4-2n
2n-2
=
16-8n
2n
Tn=
8
2
+
0
22
+
-8
23
+…+
24-8n
2n-1
+
16-8n
2n
1
2
Tn=
8
22
+
0
23
+…+
24-8n
2n
+
16-8n
2n+1

①-②得
1
2
Tn=4-8(
1
22
+
1
23
+…+
1
2n
)-
16-8n
2n+1

=4-8•
1
22
(1-
1
2n-1
)
1-
1
2
-
16-8n
2n+1
=4-4(1-
1
2n-1
)-
16-8n
2n+1
=
4n
2n

Tn=
8n
2n
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较数学公式数学公式的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:青岛二模 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:《第2章 数列》、《第3章 不等式》2010年单元测试卷(陈经纶中学)(解析版) 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:2012年高考复习方案配套课标版月考数学试卷(二)(解析版) 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较的大小,并加以证明.

查看答案和解析>>

同步练习册答案