精英家教网 > 高中数学 > 题目详情
若函数f(x)=ax2+bx+c的导函数f′(x)的图象如图所示,则函数f(x)的图象可能是(  )
分析:已知f′(x)的图象,与x轴交于点(m,0),m>0,点(m,0)为极小值点,利用此信息进行求解;
解答:解:∵函数f(x)=ax2+bx+c的导函数f′(x)的图象如图所示,
与x轴正半轴相交于一点,可以设为(m,0)且m>0,
当x>m,f′(x)>0,f(x)为增函数;
当x<m,f′(x)<0,f(x)为减函数;
所以f(x)在x=m处取得极小值,
A,B、存在极大值,不满足;
C、存在极小值,但是极值点的横坐标在x轴负半轴上,不满足;
D、在x正半轴上某点存在极小值,故选D;
点评:此题主要考查二次函数与导函数的关系,利用导数研究函数的极值点问题,利用好图象会比较容易进行求解;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

①命题“对任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”;
②函数f(x)=2x-x2的零点有2个;
③若函数f(x)=x2-|x+a|为偶函数,则实数a=0;
④函数y=sinx(x∈[-π,π])图象与x轴围成的图形的面积是S=
x
-x
sinxdx;
⑤若函数f(x)=
ax-5(x>6)
(4-
a
2
)x+4(x≤6)
,在R上是单调递增函数,则实数a的取值范围为(1,8).
其中真命题的序号是
①③
①③
(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),其定义域为D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],则称f(x)为定义域上的凸函数.
(1)设f(x)=ax2(a>0),试判断f(x)是否为其定义域上的凸函数,并说明原因;
(2)若函数f(x)=㏒ax(a>0,且a≠1)为其定义域上的凸函数,试求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax(a>0,a≠1)的反函数记为y=g(x),g(16)=2,则f(
12
)
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax-2+2010(a>0且a≠1)恒过一定点,此定点坐标为
(2,2011)
(2,2011)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)若函数f(x)=ax+b的零点为x=2,则函数g(x)=bx2-ax的零点是x=0和x=
-
1
2
-
1
2

查看答案和解析>>

同步练习册答案