精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax+b
1+x2
是定义在(-1,1)上的奇函数,且f(
1
2
)=
2
5

(1)确定函数f(x)的解析式;
(2)判断并证明f(x)在(-1,1)的单调性.
分析:(1)由f(-x)=-f(x)可求得b=0,又f(
1
2
)=
2
5
,可求得,从而可求得函数f(x)的解析式;
(2)在(-1,1)上任取两个值x1,x2,且x1<x2.再作差f(x2)-f(x1)化积,判断乘积的符号即可.
解答:解:(1)由f(x)是奇函数,
∴f(-x)=-f(x)
-ax+b
1+x2
=-
ax+b
1+x2
,即
2b
1+x2
=0,
∴b=0,
f(
1
2
)=
2
5
,代入函数得a=1.
f(x)=
x
1+x2

(2)f(x)在(-1,1)上是增函数.
证明:在(-1,1)上任取两个值x1,x2,且x1<x2
f(x1)-f(x2)=
x1
1+
x
2
1
-
x2
1+
x
2
2
=
(x1-x2)(1-x1x2)
(1+
x
2
1
)(1+
x
2
2
)

∵-1<x1<x2<1,
∴-1<x1x2<1;
∴1-x1x2>0,又x1-x2<0,1+
x
2
1
>0,1+
x
2
2
>0

∴f(x1)-f(x2)<0,
∴f(x1)<f(x2),
∴f(x)在(-1,1)上是增函数.
点评:本题考查函数奇偶性的性质,着重考查奇偶函数的定义及其单调性的定义及应用,考查学生的规范意识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案