精英家教网 > 高中数学 > 题目详情
已知
AB
=2
e 1
+k
e 2
CB
=
e 1
+3
e 2
CD
=2
e 1
-
e 2
,若A、B、D三点共线,则k=
 
分析:由A,B,D三点共线,可构造两个向量共线,再利用两个向量共线的定理求解即可.
解答:解:∵A,B,D三点共线,∴
AB
BD
共线,
∴存在实数λ,使得
AB
=λ
BD

BD
=
CD
-
CB
=2
e 1
-
e 2
-(
e 1
+3
e 2
)=
e 1
-4
e 2

∴2
e 1
+k
e 2
=λ(
e 1
-4
e 2
),
e 1
e 2
是平面内不共线的两向量,
2=λ
k=-4λ
解得k=-8.
故答案为:-8.
点评:本题考查三点共线和向量共线的转化和向量共线的条件,属基本题型的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+lnx,(x>0)
(1)讨论函数f(x)的单调性;
(2)令g(x)=x3+(a-2e)x2+(a+e2)x(其中e为自然对数的底数),讨论函数H(x)=f(x)-g(x)的零点的个数;
(3)若函数y=f(x)的图象上任意两点A(x1,y1),B(x2,y2),(x1<x2),都满足x1
1k
x2
(其中k是直线AB的斜率),则称函数y=f(x)为优美函数,当a=0时,函数f(x)是否是优美函数,如果是,请证明,如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ln(x+1),(a∈R).
(Ⅰ)设函数Y=F(X-1)定义域为D
①求定义域D;
②若函数h(x)=x4+[f(x)-ln(x+1)](x+
1
x
)+cx2+f′(0)在D上有零点,求a2+c2的最小值;
(Ⅱ) 当a=
1
2
时,g(x)=f′(x-1)+bf(x-1)-ab(x-1)2+2a,若对任意的x∈[1,e],都有
2
e
≤g(x)≤2e恒成立,求实数b的取值范围;(注:e为自然对数的底数)
(Ⅲ)当x∈[0,+∞)时,函数y=f(x)图象上的点都在
x≥0
y-x≤0
所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省宁波市象山中学、象山港书院高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=ax2+lnx,(x>0)
(1)讨论函数f(x)的单调性;
(2)令g(x)=x3+(a-2e)x2+(a+e2)x(其中e为自然对数的底数),讨论函数H(x)=f(x)-g(x)的零点的个数;
(3)若函数y=f(x)的图象上任意两点A(x1,y1),B(x2,y2),(x1<x2),都满足(其中k是直线AB的斜率),则称函数y=f(x)为优美函数,当a=0时,函数f(x)是否是优美函数,如果是,请证明,如果不是,请说明理由.

查看答案和解析>>

同步练习册答案