精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
25
+
y2
9
=1
的焦点为F1、F2,P为椭圆上一点,∠F1PF2=60°,则△PF1F2的面积是
3
3
3
3
分析:利用椭圆定义求出|PF1|+|PF2|和|F1F2|的值,通过余弦定理求出|PF1||PF2|的值,再代入三角形的面积公式即可.
解答:解:由椭圆
x2
25
+
y2
9
=1
方程可知,
a=5,b=3,∴c=4
∵P点在椭圆上,F1、F2为椭圆的左右焦点,
∴|PF1|+|PF2|=2a=10,|F1F2|=2c=8
在△PF1F2中,
cos∠F1PF2=
|PF1|2+|PF2|2-|F1F2|2
2|PF1||PF2|

=
(|PF1| +|PF2|)2-2|PF1||PF2|-|F1F2|2
2|PF1||PF2|

=
102-2|PF1||PF2|-82
2|PF1||PF2|

=
36 -2|PF1||PF2|
2|PF1||PF2|

=cos60°
=
1
2

∴72-4|PF1||PF2|=2|PF1||PF2|,
∴|PF1||PF2|=12,
又∵在△F1PF2中,
S△PF1F2=
1
2
|PF1||PF2|sin∠F1PF2
S△PF1F2=
1
2
×12sin60°=3
3

故答案为:3
3
点评:本题主要考查椭圆中焦点三角形的面积的求法,关键是应用椭圆的定义和余弦定理转化,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点P(x,y)在椭圆
x2
25
+
y2
16
=1上,若A点坐标为(1,0),|
AM
|=1且
PM
AM
=0
,则|
PM
|
的最小值是
119
3
119
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在y轴上的椭圆方程为
x2
25-k
+
y2
k-9
=1
,则k的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
25
+
y2
9
=1
,过椭圆右焦点F的直线L交椭圆于A、B两点,交y轴于P点.设
PA
=λ1
AF
PB
=λ2
BF
,则λ12等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是
x2
25
+
y2
9
=1(x≠0,y≠0)
上的动点P,F1、F2是椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且
F1M
MP
=0
,则|
OM
|
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
25
+
y2
9
=1
,过椭圆右焦点F的直线L交椭圆于A、B两点,交y轴于P点.设
PA
=λ1
AF
PB
=λ2
BF
,则λ12等于(  )
A.-
9
25
B.-
50
9
C.
50
9
D.
9
25

查看答案和解析>>

同步练习册答案