精英家教网 > 高中数学 > 题目详情
对任意的a、b、c∈R+,代数式
a2+b2+c2
ab+2bc
的最小值为
2
5
5
2
5
5
分析:根据表达式,分解分式的分子,利用基本不等式求解即得.
解答:解:任意的a,b、c∈R+,有
a2+b2+c2
ab+2bc
=
a2+
1
5
b
2
+
4
5
b2+c2
ab+2bc
2
5
ab+
4
5
bc
ab+2bc
=
2
5
5

当且仅当a2=
1
5
b2=
1
4
c2
时取等号,即c=2a,b=
5
a,所求表达式的最小值为:
2
5
5

故答案为:
2
5
5
点评:本小题主要考查基本不等式,考查运算求解能力,考查化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知函数f(x)=|x+7|,g(x)=m-|x-2|,若函数f(x)的图象恒在函数g(x)图象的上方,求实数m的取值范围.
(2)已知a>0,b>0,c>0,a+b+c=9,且2|x-1|+|x|≥
3abc
对任意的a,b,c恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,满足
AB
2
=
AB
AC
+
BA
BC
+
CA
CB
,a,b,c分别是△ABC的三边.
(1)试判定△ABC的形状,并求sinA+sinB的取值范围.
(2)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc对任意的a,b,c都成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△ABC中,满足
AB
2
=
AB
AC
+
BA
BC
+
CA
CB
,a,b,c分别是△ABC的三边.
(1)试判定△ABC的形状,并求sinA+sinB的取值范围.
(2)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc对任意的a,b,c都成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2007年江苏省南京市高考数学模拟试卷(解析版) 题型:解答题

已知△ABC中,满足,a,b,c分别是△ABC的三边.
(1)试判定△ABC的形状,并求sinA+sinB的取值范围.
(2)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc对任意的a,b,c都成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案