精英家教网 > 高中数学 > 题目详情

 
如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.

   (Ⅰ)求证:AB1//面BDC1

  (Ⅱ)求二面角C1—BD—C的余弦值;

   (Ⅲ)在侧棱AA­1上是否存在点P,使得

CP⊥面BDC1?并证明你的结论.

(I)证明:

          连接B1C,与BC1相交于O,连接OD

          ∵BCC1B1是矩形,

∴O是B1C的中点.

 
又D是AC的中点,

∴OD//AB1.………………………………………………2分

∵AB­1面BDC­1,OD面BDC1

∴AB1//面BDC1.…………………………………………4分

   (II)解:如力,建立空间直角坐标系,则

         C1(0,0,0),B(0,3,2),C(0,3,0),A(2,3,0),

         D(1,3,0)……………………5分

         设=(x1,y1,z1)是面BDC1的一个法向量,则

.…………6分

易知=(0,3,0)是面ABC的一个法向量.

.…………………………8分

∴二面角C1—BD—C的余弦值为.………………………………9分

   (III)假设侧棱AA1上存在一点P(2,y,0)(0≤y≤3),使得CP⊥面BDC1.

         则

          ∴方程组无解.

∴假设不成立.

∴侧棱AA1上不存在点P,使CP⊥面BDC1.……………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,则直线A1C1和平面ACB1的距离等于
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分别为AA1、B1C的中点,AB=AC.
(1)证明:DE⊥平面BCC1
(2)设B1C与平面BCD所成的角的大小为30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,D是BC中点,且AA1=AB
(1)证明:AD⊥BC1
(2)证明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)如图,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC′B′,E、F分别为棱AB、CC′的中点.
(I)求证:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF与平面ACC'A'所成的角的余弦为
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步练习册答案