精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-alnx(a∈R).
(Ⅰ)若a=2,求证:f(x)在(1,+∞)上是增函数;
(Ⅱ)求f(x)在[1,e]上的最小值.
【答案】分析:(Ⅰ)要证函数在(1,+∞)上是增函数,只需要证明其导数大于0即可;
(Ⅱ)求导函数先研究函数的单调性,确定极值,从而确定函数的最值,分类讨论是解题的关键.
解答:证明:(Ⅰ)当a=2时,f(x)=x2-2lnx,
当x∈(1,+∞)时,
所以f(x)在(1,+∞)上是增函数.          (5分)
(Ⅱ)解:
当x∈[1,e],2x2-a∈[2-a,2e2-a].
若a≤2,则当x∈[1,e]时,f′(x)≥0,
所以f(x)在[1,e]上是增函数,
又f(1)=1,故函数f(x)在[1,e]上的最小值为1.
若a≥2e2,则当x∈[1,e]时,f′(x)≤0,
所以f(x)在[1,e]上是减函数,
又f(e)=e2-a,所以f(x)在[1,e]上的最小值为e2-a.
若2<a<2e2,则当时,f′(x)<0,此时f(x)是减函数;
时,f′(x)>0,此时f(x)是增函数.

所以f(x)在[1,e]上的最小值为
综上可知,当a≤2时,f(x)在[1,e]上的最小值为1;
当2<a<2e2时,f(x)在[1,e]上的最小值为
当a≥2e2时,f(x)在[1,e]上的最小值为e2-a.(13分)
点评:本题以函数为载体,考查函数的单调性与函数的最值.利用导数研究函数的单调性比用函数单调性的定义要方便,但应注意f′(x)>0(或f′(x)<0)仅是f(x)在某个区间上为增函数(或减函数)的充分条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案