精英家教网 > 高中数学 > 题目详情
19.在△ABC中,若$\frac{{{{sin}^2}A+{{sin}^2}B}}{{{{sin}^2}C}}=1$,则△ABC的形状一定是直角三角形.

分析 利用正弦定理化简即可判断出结论.

解答 解:∵$\frac{{{{sin}^2}A+{{sin}^2}B}}{{{{sin}^2}C}}=1$,由正弦定理可得:a2+b2=c2,∴C=Rt∠.
则△ABC的形状一定是直角三角形.
故答案为:直角三角形.

点评 本题考查了正弦定理、勾股定理的逆定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在墙上挂着一块边长为16cm的正方形木板,上面画了大、小两个同心圆,半径分别为2cm,6cm,某人站在3m之外向此板投镖,设投镖击中线上或没有投中木板时都不算(可重投),问:
(1)投中大圆内的概率是多少?
(2)投中小圆与大圆形成的圆环的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$-1)dx=$\frac{π}{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.以下四个命题中:
①在回归分析中,可用相关指数R2的值判断模型的拟合效果,R2越大,模拟的拟合效果越好;
②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;
③对分类变量x与y的随机变量k2的观测值k来说,k越小,判断“x与y无关系”的把握程度越大;
④对分类变量x与y的随机变量k2的观测值k来说,k越小,判断“x与y有关系”的把握程度越大.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.原始社会时期,人们通过在绳子上打结来计算数量,即“结绳计数”.当时有位父亲,为了准确记录孩子的成长天数,在粗细不同的绳子上打结,由细到粗,满七进一,那么孩子已经出生510天.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数 z=$\frac{\sqrt{3}+i}{(1-\sqrt{3}i)^{2}}$,$\overline{z}$是z的共轭复数,则|$\overline{z}$|=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.计算定积分:${∫}_{0}^{\frac{π}{2}}$(x+sinx)dx=$\frac{{π}^{2}}{8}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在锐角△ABC中,已知∠A,∠B,∠C成等差数列,设y=sinA-cos(A-C+2B),则y的取值范围是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{2\sqrt{2}}{3}$,经过椭圆的左顶点A(-3,0)作斜率为k(k≠0)的直线l交椭圆C于点D,交轴于点E
(1)求椭圆C的方程;
(2)已知点P为线段AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案