精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x+1)lnx-x+1.
(Ⅰ)若xf'(x)≤x2+ax+1,求a的取值范围;
(Ⅱ)证明:(x-1)f(x)≥0.
分析:(I)先根据导数公式求出导函数f'(x),代入xf'(x)≤x2+ax+1,将a分离出来,然后利用导数研究不等式另一侧的最值,从而求出参数a的取值范围;
(II)根据(I)可知g(x)≤g(1)=-1即lnx-x+1≤0,然后讨论a与1的大小,从而确定(x-1)的符号,然后判定f(x)与0的大小即可证得结论.
解答:解:(Ⅰ)f′(x)=
x+1
x
+lnx-1=lnx+
1
x

xf'(x)=xlnx+1,
题设xf'(x)≤x2+ax+1等价于lnx-x≤a.
令g(x)=lnx-x,则g′(x)=
1
x
-1

 当0<x<1,g′(x)>0;
当x≥1时,g′(x)≤0,x=1是g(x)的最大值点,
g(x)≤g(1)=-1
 综上,a的取值范围是[-1,+∞).
(Ⅱ)由(Ⅰ)知,g(x)≤g(1)=-1即lnx-x+1≤0.
当0<x<1时,f(x)=(x+1)lnx-x+1=xlnx+(lnx-x+1)≤0;
当x≥1时,f(x)=lnx+(xlnx-x+1)=lnx+x(lnx+
1
x
-1)
=lnx-x(ln
1
x
-
1
x
+1)
≥0
 所以(x-1)f(x)≥0
点评:本题主要考查了利用导数研究函数的最值,以及利用参数分离法求参数的取值范围,同时考查了运算求解的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案