精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=1,a n+1 a n﹣1=ana n﹣1+an2(n∈N,n≥2),且=kn+1.
(1)求证:k=1;
(2)求数列{an}的通项公式;
(3)求数列{}的前n项和.
证明:(1)∵=kn+1,a1=1

又因为a1=1,a n+1 a n﹣1=ana n﹣1+an2(n≥2)则



∴a2=2k
∴k+1=2k
∴k=1.
(2)∵=n+1
∴an==n(n﹣1)(n﹣2)…21=n!
(3)因为,设其前n项和为 Sn
当x=1时,
当x≥1时,…(1)
x…(2)
由(1)﹣(2)得:

综上所述:
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案