精英家教网 > 高中数学 > 题目详情
(2013•浙江模拟)如图,四棱锥P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=
12
CD=2,PA=2,E,F分别是PC,PD的中点.
(Ⅰ)证明:EF∥平面PAB;
(Ⅱ)求直线AC与平面ABEF所成角的正弦值.
分析:(I)根据E,F分别是PC,PD的中点,结合三角形中位线定理及平行公理,可得AB∥EF,进而由线面平行的判定定理得到EF∥平面PAB;
(Ⅱ)取线段PA中点M,连接EM,则EM∥AC,故AC与平面ABEF所成角等于ME与平面ABEF所成角的大小,作MH⊥AF,垂足为H,连接EH,可证得∠MEH是ME与平面ABEF所成角,解Rt△EHM可得答案.
解答:证明:(I)∵E,F分别是PC,PD的中点
∴EF∥CD
又∵AB∥CD,
∴AB∥EF,
又∵EF?平面PAB,AB?平面PAB;
∴EF∥平面PAB;
解:(Ⅱ)取线段PA中点M,连接EM,则EM∥AC
故AC与平面ABEF所成角等于ME与平面ABEF所成角的大小
作MH⊥AF,垂足为H,连接EH
∵PA⊥底面ABCD,
∴PA⊥AB
又∵AB⊥AD,PA∩AD=A
∴AB⊥平面PAD
∴EF⊥平面PAD
∵MH?平面PAD
∴EF⊥MH
∴MH⊥平面ABEF
∴∠MEH是ME与平面ABEF所成角
在Rt△EHM中,EM=
1
2
AC=
5
,MH=
2
2

∴sin∠MEH=
MH
EM
=
10
10

∴AC与平面ABEF所成角的正弦为
10
10
点评:本题主要考查空间点、线、面位置关系,线面所成角等基础知识,同时考查空间想象能力和推理论证能力,其中(1)要熟练掌握线面平行的判定定理;(2)的关键是找出线面夹角的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浙江模拟)函数f(x)=Asin(ωx+φ)(A>0,ω>),|φ|<
π
2
)的部分图象如图示,则将y=f(x)的图象向右平移
π
6
个单位后,得到的图象解析式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知C=
π3

(Ⅰ)若a=2,b=3,求△ABC的外接圆的面积;
(Ⅱ)若c=2,sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)一个口袋中装有2个白球和3个红球,每次从袋中摸出两个球,若摸出的两个球颜色相同为中奖,否则为不中奖,则中奖的概率为
2
5
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)如图,在四边形ABCD中,AB⊥BC,AD⊥DC.若|
AB
|=a,|
AD
|=b,则
AC
BD
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知sin(
π
4
-x)=
3
4
,且x∈(-
π
2
,-
π
4
)
,则cos2x的值为
-
3
7
8
-
3
7
8

查看答案和解析>>

同步练习册答案