精英家教网 > 高中数学 > 题目详情
函数在x=1处切线的倾斜角为( )
A.
B.
C.
D.
【答案】分析:先求函数的导函数,求出f′(1),根据导数的几何意义可知在x=1处切线的斜率,最后根据斜率和倾斜角的关系可求出所求.
解答:解:∵
∴f′(x)=2-
则f′(1)=2-1=1=tanα
∴α=
故选A.
点评:本题主要考查了导数的几何意义,以及斜率和倾斜角的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax+lnx(a∈R).
(Ⅰ)若a=2,求曲线y=f(x)在x=1处切线的斜率;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2+bx+c的图象与y轴交于点(0,2),并且在x=1处切线的方向向量为
n
=(1,3)

(1)若x=
2
3
是函数f(x)的极值点,求f(x)的解析式;
(2)若函数f(x)在区间[
3
2
,2
]单调递增,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•咸阳三模)已知函数f(x)=ax+lnx(a∈R).
(1)若a=2,求曲线y=f(x)在x=1处切线的斜率;
(2)当a<0时,求f(x)的单调区间;
(3)设g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年陕西省宝鸡中学高三(上)第二次月考数学试卷(文科)(解析版) 题型:选择题

函数在x=1处切线的倾斜角为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案