精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点A为抛物线y2=8x的焦点,上顶点为B,离心率为
3
2

(1)求椭圆C的方程;
(2)过点(0,
2
)
且斜率为k的直线l与椭圆C相交于P,Q两点,若线段PQ的中点横坐标是-
4
2
5
,求直线l的方程.

精英家教网
(1)抛物线y2=8x的焦点为A(2,0),
∵椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点A为抛物线y2=8x的焦点
∴a=2…(2分)
∵离心率e=
c
a
=
3
2
,∴c=
3
…(3分)
故b2=a2-c2=1…(5分)
所以椭圆C的方程为:
x2
4
+y2=1
…(6分)
(2)设直线l:y=kx+
2

y=kx+
2
x2+4y2=4
,消去y可得(4k2+1)x2+8
2
kx+4=0
…(8分)
因为直线l与椭圆C相交于P,Q两点,所以△=128k2-16(4k2+1)>0
解得|k|>
1
2
…(9分)
x1+x2=
-8
2
k
4k2+1
x1x2=
4
4k2+1
…(10分)
设P(x1,y1),Q(x2,y2),PQ中点M(x0,y0
因为线段PQ的中点横坐标是-
4
2
5
,所以x0=
x1+x2
2
=
-4
2
k
4k2+1
=-
4
2
5
…(12分)
解得k=1或k=
1
4
…(13分)
因为|k|>
1
2
,所以k=1
因此所求直线l:y=x+
2
…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案