精英家教网 > 高中数学 > 题目详情

若x∈(0,1),常数λ∈(2,),解关于x的不等式

答案:
解析:

 

 说明 该题化归为一元二次不等式的解是解决本题的关键.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=1+
2
x
,数列{an}中,a1=a,an+1=f(an)(n∈N*).当a取不同的值时,得到不同的数列{an},如当a=1时,得到无穷数列1,3,
5
3
11
5
,…;当a=2时,得到常数列2,2,2,…;当a=-2时,得到有穷数列-2,0.
(Ⅰ)若a3=0,求a的值;
(Ⅱ)设数列{bn}满足b1=-2,bn=f(bn+1)(n∈N*).求证:不论a取{bn}中的任何数,都可以得到一个有穷数列{an};
(Ⅲ)若当n≥2时,都有
5
3
an<3
,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意函数f(x),x∈D,可按图构造一个数列发生器.记由数列发生器产生数列{xn}.
(Ⅰ)若定义函数f(x)=
4x-2
x+1
,且输入x0=
49
65
,请写出数列{xn}的所有项;
(Ⅱ)若定义函数f(x)=2x+3,且输入x0=-1,求数列{xn}的通项公式xn
(Ⅲ)若定义函数f(x)=xsinx(0≤x≤2π),且要产生一个无穷的常数列{xn},试求输入的初始数据x0的值及相应数列{xn}的通项公式xn

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意函数f(x),x∈D,可按如图构造一个数列发生器,记由数列发生器产生数列{xn}.
(1)若定义函数f(x)=
4x-2
x+1
,且输入x0=
49
65
,请写出数列{xn}的所有项;
(2)若定义函数f(x)=xsinx(0≤x≤2π),且要产生一个无穷的常数列{xn},试求输入的初始数据x0的值及相应数列{xn}的通项公式xn
(3)若定义函数f(x)=2x+3,且输入x0=-1,求数列{xn}的通项公式xn

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中
(1)常数列既是等差数列又是等比数列;
(2)a∈(0,
π
2
),则aina+
1
sina
有最小值2
(3)若数列{an}前n项和Sn=Pn,则无论P取何值时{an}一定不是等比数列.
(4)在△ABC中,B=60°,b=6
3
,a=10,则满足条件的三角形只有一个.
(5)函数f(x)=cos2x-sin2x的最小正周期为2π其中正确命题的序号是
(3),(4)
(3),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出函数封闭的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,称函数y=f(x)在D上封闭.
(1)若定义域D1=(0,1),判断函数g(x)=2x-1是否在D1上封闭,并说明理由;
(2)若定义域D2=(1,5],是否存在实数a,使得函数f(x)=
5x-ax+2
在D2上封闭?若存在,求出a的取值范围;若不存在,请说明理由.
(3)利用(2)中函数,构造一个数列{xn},方法如下:对于给定的定义域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=1,2,3,4…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个无穷常数列{xn},求实数a的取值范围.
②如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的取值范围.

查看答案和解析>>

同步练习册答案