精英家教网 > 高中数学 > 题目详情

a>2,给定数列{an},a1aan+1= (n∈N+).

求证:an>2,且an+1ann∈N+).

证明:用数学归纳法证明an>2,

(1)当n=1 ,a1=a>2,结论成立.

(2)假设当n=k(k≥2)时结论成立,即a k>2,

那么当n=k+1时,a k+1-2= = >0,即a k+1>2,

由(1)(2)可知对n∈N+ 时都有an>2.

当an>2,= =< =1,

所以an>2,且an+1<an(n∈N+).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>2,给定数列{xn},其中x1=a,xn+1=
x
2
n
2(xn-1)
(n=1,2…)
求证:
(1)xn>2,且
xn+1
xn
<1(n=1,2…)

(2)如果a≤3,那么xn≤2+
1
2n-1
(n=1,2…)

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>2,给定数列{an},a1=a,an+1=
an22(an-1)
(n∈N+).求证:an>2,且an+1<an(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>2,给定数列{an},a1=a,an+1an=an+1+
1
2
a
2
n
(n∈N*)

(1)求证:an>2;
(2)求证:数列{an}是单调递减数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>2,给定数列{xn},其中x 1=a,xn+1=
x
2
n
2(xn-1)
(n∈N*)
求证:
(1)xn>2,且xn+1<xn(n∈N*);
(2)如果2<a≤3,那么xn≤2+
1
2n-1
(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年重点中学模拟理)  (12分)设a>2,给定数列求证:

   (1),且

   (2)如果

查看答案和解析>>

同步练习册答案